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Abstract

Multigrid methods are evaluated for their suitability towards a GPU imple-
mentation. A Jacobi-based variant of a multigrid solver for the 2D Poisson
equation built on C++, OpenGL and GLSL is presented. The performance of
various implementation techniques is benchmarked and interpreted, a num-
ber of optimization strategies are tested and the final results are compared
across different hardware platforms and to a traditional CPU-based imple-
mentation.
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Introduction

Since the advent of high performance Graphics Processing Units (GPUs)
there have been numerous efforts to use their capabilities in ways differ-
ent from the original intention. In their latest versions they provide high-
performance highly parallel Single Instruction Multiple Data (SIMD) floating
point computational resources. While using GPUs for non-rendering tasks
has some history even when they were limited to fixed-function operations,
their utility greatly increased with the introduction of user-programmable
shading hardware [14]. Since then, GPUs have been used as low-cost stream
processors [15] in a variety of applications – both graphics-related ones like
image processing [17] and unrelated numerical operations like simulating fluid
dynamics [7].

In this work, GPUs will be employed to implement a multigrid method
[2] for solving boundary-value problems (BVPs) in elliptic partial differential
equations (PDEs). This allows for a wide variety of practical applications,
but the focus of this thesis is establishing the performance potential of such
a method on current hardware, especially vis-à-vis conventional CPU-based
implementations.

The first chapter will provide some background regarding the mathemat-
ical foundations of multigrid methods on the one hand, and a summary of
the current state of general purpose GPU (GPGPU) programming on the
other. Finally, an overview of previous works in the field will be given. Af-
ter these basics have been established, our implementation will be described
in detail, including motivation for all design choices, mostly in the form of
benchmarks.

As mentioned above, the focus in this work is on the performance po-
tential of multigrid methods on the most recent GPU architectures. Thus
the second chapter will concern itself with evaluating the benchmark re-
sults of various architectures, and comparing them to results obtained via
conventional CPU-based implementations. Additionally, some optimization
strategies will be presented and have their effectiveness tested.

In the final chapter possible future research in this area will be listed,
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which can be divided into two groups: one adopting to advances in graph-
ics hardware and its programming paradigms, and the other implementing
different variations and extensions of the multigrid idea on GPUs.
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Chapter 1

Background

To implement a numerical PDE solver based on the multigrid method on
GPUs it is essential to first understand that method, and for that reason
the first part of this chapter will explain its basics. It will also identify the
central building blocks of the algorithm that will be mapped to a SIMD
implementation in the second chapter, and present the model problem that
will be treated throughout this work.

While GPGPU is no longer as obscure a field as it was a few years ago,
it still seems prudent to provide a short summary of the how and why of it.
This will be accomplished in the second section of this chapter. In the end,
an overview of previous works explicitly in the field of GPGPU multigrid will
be listed and described.

1.1 Multigrid Methods

Multigrid Methods are popular as they allow the fast, numerical, iterative
solving of systems of equations. They use a combination of classical iterative
solvers – Jacobi or Gauss-Seidel, for example – with a hierarchy of discretiza-
tions to achieve this goal. An introduction to the methods is found in Briggs
et al. [2], and a comprehensive treatment is given in the book by Trottenberg,
Oosterlee and Schüller [19].

One of the most important theoretical properties of multigrid methods
is their complexity class. Full multigrid implementations are O(n) in both
space and time and thus among the most efficient solvers available. As we
are focused on the efficiency aspects of implementations here, such properties
will not be explored further.
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1.1.1 The Model Problem

Elliptic PDEs are the most common application of multigrid methods. There-
fore, we chose the prototype of such equations, the discrete two-dimensional
Poisson equation with Dirichlet boundaries in the unit square Ω = (0, 1)2, as
our test case. This problem is given by

−∆huh(x, y) = fΩ
h (x, y)

uh(x, y) = fΓ
h (x, y) for ((x, y) ∈ Γh = ∂Ωh)

with boundary conditions fΓ
h (x, y) and discretization width h = 1/n, n ∈ IN

being the number of grid points in each direction.
Using the standard O(h2) numerical five-point approximation of −∆h we

arrive at

−∆huh(x, y) = 1/h2[4uh(x, y)− uh(x− h, y)− uh(x + h, y)

−uh(x, y − h)− uh(x, y + h)]

= 1/h2

 0 −1 0
−1 4 −1

0 −1 0


h

uh(x, y) (1.1)

as our final formula. The stencil notation employed in (1.1) will be used in
future formulas, as it maps well to the hardware implementation.

1.1.2 The Multigrid Algorithm

Many traditional iterative solvers like the ω-Jacobi or Gauss-Seidel methods
exhibit the following interesting behavior: high frequency error components
are reduced much faster than low frequency error components. As shown in
Figure 1.1, this means the error becomes smooth in very few iterations but
may take a large number of iterations to be reduced globally.

To understand this behaviour, the eigenvectors and eigenvalues of the
iteration matrix should be examined. Figure 1.2 shows these values for ω-
Jacobi and a selection of relaxation parameters. As shown, the selection of
the ω parameter can be used to influence which error frequencies should be
dampened most rapidly.

From this observation the multigrid method has been derived. By it-
erating on different discretization widths, all frequency components of the
error are reduced efficiently. This is achieved via the Coarse Grid Correction
(CGC) process:

1. Start with a few smoothing steps – that is, steps of the iterative solver.
(Presmoothing)
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Figure 1.1: Smoothing properties of the Jacobi method. From left to right:
error after 0, 10, 100 and 1000 iterations

Figure 1.2: Eigenvectors and Eigenvalues of the ω-Jacobi iteration matrix on
16 nodes.
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2. Calculate the residual and transfer it to a coarser grid.

3. Solve for the residual on the coarser grid.

4. Transfer the solution back to the finer level, and add it to the existing
estimate.

5. (Optional) Reduce errors introduced by the transfer process by addi-
tional smoothing. (Postsmoothing)

Formally, iteratively solving an equation Lu = f using this method can
be described as follows:

ūm = SMOOTHn1(um, L, f)

rm = f − Lūm (1.2)

rm
c = Rrm

Lcv
m
c = rm

c (1.3)

vm = Ivm
c

ŭm = ūm + vm

um+1 = SMOOTHn2(ŭm, L, f)

With m being the iteration index, R and I restriction and interpolation
operators, r the residual, v the correction, SMOOTH the smoothing method
used and n1, n2 the number of pre- and postsmoothing steps, respectively.

The remaining question is how to solve the equation for the residual in
(1.3). As it is of the same form as the original problem, but smaller, the
obvious answer is to use the same method recursively until reaching some
lowest level where the solution can be derived directly. This approach yields
the basic multigrid methods. Figure 1.3 illustrates the process on a simple
example.

What are the advantages of this approach? Primarily, the frequencies
at coarser grids are progressively “stretched”, so errors of all frequencies get
reduced efficiently. Additionally, the problem size is reduced to 1

4
with each

coarsening (for 2D problems), which directly impacts the computational ef-
fort required by the solver. In the next section, we will examine the individual
steps of this algorithm in more detail.

1.1.3 Components of the Multigrid Method

Multigrid methods are very flexible and can be applied on a wide variety of
structures in numerous ways. In this section, the choices made for the indi-
vidual components of the GPU implementation are presented and justified.
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Figure 1.3: Multigrid method example, arrows show the flow of data. Solu-
tion images from Rüde [16].

Where possible, the methods most suited to achieving optimal performance
in a GPGPU setting will be identified. The components and operations dis-
cussed are the following:

• Grid and coarsening type

• Smoothing/Relaxation method

• Residual calculation

• Restriction (fine to coarse transfer)

• Interpolation (coarse to fine transfer)

• Cycle type

Grid and Coarsening Type
The most common grid coarsening types are shown in Figure 1.4. Semi-

coarsening is only advantageous for specific applications, which leaves the
choice between standard and red/black coarsening. While the latter allows
using the very efficient Gauss-Seidel Red/Black (GS-RB) smoother (see next
section), it is not as well suited to GPUs because of their cache and memory
layout. We use standard coarsening.
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Figure 1.4: Grid coarsening – from left to right: original grid, standard-,
semi- and red/black-coarsening

Smoothing/Relaxation Method
The Jacobi method with a relaxation parameter (ω-JAC) or the Gauss-

Seidel method with either lexicographical (GS-lex) or red/black sorting of
grid points are the common choices. On GPUs we are most interested in
the parallelization properties of these methods, as summarized by Trotten-
berg et al [19]. Their findings are shown in table 1.1. From these numbers,

Method Smoothing factor Smoothing Parallelization
ω-JAC, ω = 1 1.00 None N
ω-JAC, ω = 0.5 0.75 Unsatisfactory N
ω-JAC, ω = 0.8 0.60 Acceptable N

GS-LEX 0.50 Good
√

N
GS-RB 0.25 Very Good 1

2
N

Table 1.1: Parallelization possibilities versus smoothing properties of itera-
tive solvers

the only acceptable candidates for a – inherently highly parallel – GPU im-
plementation are 0.8-JAC and GS-RB. While the latter has better smooth-
ing properties, the parallelization advantages of 0.8-JAC compounded with
the additional cache and addressing complexities and related overhead intro-
duced by GS-RB lead us to chose the Jacobi-based method. It can be easily
implemented using a five-point stencil on the standard grid.

Residual Calculation
Calculating the residual numerically is very similar to applying one step of

Jacobi smoothing, the formula is provided in (1.2). Given the choices already
made, there are no different methods to consider here.

Restriction (fine to coarse transfer)
The intuitive restriction operators for standard coarsening are given by the
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stencils in formula (1.4).

Injection: 1

 0 0 0
0 1 0
0 0 0



Half Weighting: 1
8

 0 1 0
1 4 1
0 1 0



Full Weighting: 1
16

 1 2 1
2 4 2
1 2 1

 (1.4)

All of these have been implemented, but in benchmarks and experiments full
weighting is used exclusively unless otherwise mentioned. While the simpler
methods are comparatively faster, their speed advantage is usually inhibited
by the scaling errors they introduce.

Interpolation (coarse to fine transfer)
Interpolation is usually done by applying bilinear filtering, as specified by

the distributive stencil in formula (1.5).

Bilinear Filtering: 1
4

 1 2 1
2 4 2
1 2 1

 (1.5)

Cycle Type
The cycle type of a MG method is determined by the amount of times

a coarse grid correction is performed before interpolating the result back to
the upper level. The three main cycle types found in literature are shown in
figure 1.5.

It will be shown in later chapters that – due to the high degree of par-
allelization and high overhead costs – iterations on coarse grids are very
wasteful on modern GPUs. As W and F cycles both require more computa-
tions on very coarse grid levels without providing significant advantages the
GPU implementation focuses on V cycles.

1.2 General Purpose GPU Programming

Interest in using the vast computational capabilities of GPUs for many nu-
merically intensive problems has been on the rise for the past 5 years, since
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Figure 1.5: Multigrid cycle types

the introduction of user-programmable shaders [14]. A short history of and
introduction to the field can be found in [17]. Very recently, the major
graphics card manufacturers NVIDIA and ATI (now AMD) have officially
recognized these efforts by providing APIs tailored to this kind of usage,
named CUDA [5] and CTM [10] respectively. While neither of these are
used for this implementation, a look into the advantages and disadvantages
compared to traditional GPGPU development can be found in section 2.5.

This part of the document is not intended to provide details on all in-
tricacies of GPGPU development. It will, however, give a short summary,
provide some performance data and look into reasons that motivate imple-
menting multigrid methods on GPUs.

1.2.1 GPGPU Overview

When performing GPGPU computations, GPUs can be seen as highly paral-
lel streaming SIMD processors. Array data is kept in one- or two-dimensional
textures with 1 to 4 components of INT8, FP16 or FP32 type. The program
parts that would traditionally make up the inner loop of a SIMD program
are executed by the GPU as pixel shaders – these are (usually small) code
fragments specifying calculations that are carried out for each destination
pixel to determine its value.

Figure 1.6 illustrates the mapping of a very simple CPU program work-
ing on a few 1D arrays to some GPU. The details of texture creation and
rendering were omitted, as they are long-winded and differ between APIs.

The most important advantages compared to a CPU implementation are
as follows:
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Figure 1.6: Mapping a simple CPU program to GPGPU.

• Very high degree of parallel execution, enabling high speedups.

• High bandwidth, both on-chip and external.

• For some algorithms, a cache structure optimized for 2D-locality is
advantageous.

• CPU is mostly free to perform other tasks while GPU is working.

However, there are also some serious limitations and drawbacks:

• I/O exclusively via textures, which only allow a restricted amount of
formats and accesses.

• As of yet, no double precision data types.

• Very slow branching, especially if the taken branch alternates repeat-
edly.

• Limited support for Integers, particularly for bit-wise operations.

• Large overhead costs, therefore GPGPU only makes sense for big prob-
lem sizes.

• Fixed amount of on-board memory, transfers to and from main memory
are costly.
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• Most mathematical operations beyond basic arithmetics are only avail-
able as either reduced-precision approximations or slow software imple-
mentations.

• Complicated programming model for non-graphics programmers.

• Until recently, no direct support for scalar operations. Only 4-
component vector operations were supported (due to the heritage of
RGBA color and XYZW geometry processing) natively, to achieve a
speedup for scalar-only computations some packing method had to be
used [18]. APIs as of yet still don’t fully support single-component
computations.

Obviously, the main draw of GPGPU development is performance. How
much there is to be gained in this area will be investigated in the next section.

1.2.2 Theoretical Performance Data

To understand the interest in GPGPU we shall examine a modern high-end
GPU – NVIDIA’s G80 – and compare its theoretical performance with that of
a similarly priced CPU (as of June 2007), Intel’s Core 2 Quad 6600. Note that
all the following estimates only hold true under the unrealistic assumption
of perfect utilization of all computational and bandwidth resources, and that
they use the hardware vendor standard of counting 1 multiply-add (MAD)
as 2 FLOPs.

NVIDIA G80 data:

• 16 Multiprocessors, each capable of 8 FP32 MADs per cycle
→ 256 FP operations per cycle

• Shader ALUs clocked at 1350MHz → 345 GFLOPs

• 6x64bit wide external memory bus, clocked at 900MHz DDR
→ 86.4 GB/s memory bandwidth

Core 2 Quad 6600 data:

• 4 cores, each capable of 4 FP32 MADs per cycle via SSE
→ 32 FP operations per cycle

• Clocked at 2400MHz → 76 GFLOPs

• 2x64bit wide external memory bus, clocked at 400MHz DDR
→ 12.8 GB/s memory bandwidth
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While these numbers are not very useful on their own, they still show
that the GPU has the potential to perform more than 4.5 times as many
floating point operations per second, and – perhaps even more important –
can transfer nearly 7 times as fast to and from external memory. Figure 1.7
illustrates the difference, and thus the main reason for the practical relevance
of GPGPU techniques, graphically.

Figure 1.7: Theoretical performance comparison of high-end GPU and CPU

1.2.3 The Multigrid Method and GPUs

From the data and information gathered above, one can surmise that a
GPGPU implementation is advisable when a problem is highly parallel in
nature and expressible as a number of streaming SIMD operations on –
preferably large – blocks of data. It should also require as little branch-
ing as possible while making extensive use of floating point operations and
memory bandwidth.

The basic multigrid method as described in section 1.1.3, with the compo-
nents chosen as stated, fits these requirements admirably. Each of the main
operations, Jacobi-based smoothing, residual calculation, restriction and in-
terpolation, can be expressed as an independent sequence of data accesses
and floating point calculations at each position. The only requirement that
is not fulfilled perfectly is that each operation should always be executed on
a large block of data. On the coarsest grid level, there is only a single node
left, and even the first few levels immediately above are not large compared
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to the batch sizes1 of modern GPUs. Thus some inefficiencies of the GPGPU
implementation at those grid levels are to be expected.

1.3 Previous Work

As explained above, multigrid methods seem well suited to a GPU-based
implementation. As such, it is not particularly surprising that there have
been quite a few previous efforts in the the field.

Bolz et al. in 2002 [1] mapped both conjugate gradient and multigrid
solvers to GPUs and tested a reference implementation on the GeForce FX
architecture. The most interesting aspect of their work is splitting the prob-
lem domain into 4 subdomains to fully use all computational resources on
the GPU and work around the 4-component-vector-only problem described
in section 1.2.1. They use a fragment program to synchronize boundary con-
ditions between the quadrants. Unfortunately they do not provide data on
the overhead costs incurred by this process.

Goodnight et al. in 2003 [7] implement a GPU-based multigrid solver
for boundary value problems. They show three practical applications and
an in-depth analysis of optimization opportunities. However, a large part of
their efforts are directed at reducing pBuffer switching overhead, a task that
has thankfully been made obsolete by advances in OpenGL [11] since then.

Four years are a fairly long time in graphics processing, and some limita-
tions these implementations had to work around were lifted by new develop-
ments, making the workarounds unnecessary, and, in some cases, detrimental
to performance or flexibility. Also, up until now no effort at a comprehensive
comparison of multigrid performance on different GPUs has been undertaken.
This work aims to provide an implementation focused on contemporary and
future architectures, and perform comprehensive performance analysis on
multiple GPUs.

1An explanation of this concept and its effects on performance can be found in section
2.2.2.
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Chapter 2

Implementation

In this chapter, our implementation of the multigrid solver for the model
problem described in section 1.1.1 will be presented in detail. After starting
with a general description of how the individual components of the algorithm
map to GPUs, the technical choices made and libraries used will be described
in the second section.

Auxiliary requirements, that is, implementation parts that are not central
to the multigrid method, but required to test or use the implementation, are
the topic of the following section. Finally, the actual implementation of the
central operations of the GPGPU elliptic PDE solver will be examined. The
intricacies of interacting with OpenGL will be largely ignored, except when
they are relevant to either the design or performance of the implementation.

In section 2.5 some thoughts on a possible CUDA [5] version are gathered.
While CUDA only became available when this thesis was well underway,
it – and similar low-level APIs like ATI’s CTM [10] – offer some unique
advantages for the implementation of numerical methods on GPUs.

2.1 Multigrid Method to GPU Mapping

In section 1.1.3 we identified the components of a multigrid solver and made
some choices in terms of their implementation. Now, an overview of how
those components can be mapped to GPUs will be given.

Grid and Coarsening Type
A regular 2D grid with standard coarsening was selected. On GPUs, this

structure is easily represented by a pyramid of FP32 textures. However, due
to current restrictions in the OpenGL API that are leftovers from previous
3D hardware, it is not possible to use single-component FP32 textures in
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framebuffer objects (FBOs) [11, 12]. This causes a gross inefficiency that is
not easily reduced.

Bolz et al. [1] used a four-way split of their problem domain to overcome
this limitation. However, this causes additional complexities when resolving
boundary conditions. As the additional overhead caused by such methods on
modern hardware would be significant, and as the limitation is no longer one
caused by hardware design [4], but rather by API inadequacy, we decided to
simply use multi-component FBOs. This ensures that no additional overhead
is introduced that will be useless once API support for single-component
FBOs becomes available. Until such support materializes, one possiblity
would be using the “wasted” processing power to solve four similar problems
at the same time. This could be useful in applications like video processing.

Jacobi-based Relaxation
ω-Jacobi, our smoothing method of choice, is fully parallelizable and can

thus be implemented in a single pass of a pixel shading kernel. It also has
good locality in it’s memory accesses on a regular 2D grid enabling the texture
cache to hide the costs of most repeated fragment reads. The same holds true
for residual calculation, which is very similar computationally to ω-JAC
smoothing.

Restriction and interpolation
Both seem like problems perfectly suited to GPUs at first glance – in fact,

bilinear filtering has been supported in GPU hardware for about a decade
now. However, when floating-point, and especially FP32 textures are used,
there is still no uniform support for any other sampling method than nearest
neighbor. This means these methods have to be implemented via pixel shader
kernels.

2.2 API and Library Considerations

Until recently, and when the implementation discussed in this chapter was
started, the only API choices for GPGPU programs were DirectX and
OpenGL, both originally intended for graphics only. The related high level
shading languages are HLSL for DirectX, GLSlang for OpenGL and Cg [3]
as a third choice.

Out of these three possibilities only the OpenGL/GLSL combination is
both multiplatform capable and completely vendor-agnostic. In the past,
OpenGL had a significant disadvantage compared to DirectX for GPGPU
operations on smaller datasets in the high pBuffer [13] switching costs – this
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is one of the main performance hurdles reported by Goodnight et al. [7].
However, this disadvantage has been greatly reduced by the introduction of
the framebuffer object extension, as shown by Green [8]. For these reasons,
OpenGL with GLSL fragment programs was selected for this implementation.

Performing non-graphics tasks directly with any of these graphics-
oriented interfaces is quite cumbersome, so an existing wrapper library aimed
at easing GPGPU tasks was used. This library will be described in short in
the next section.

2.2.1 The GPGPU Framework

The C++ OpenGL/GLSL wrapper originally developed for PDE-based im-
age processing in [18] provides the following fundamentals for GPGPU oper-
ations:

• An easy to use texture/rendertarget class that abstracts from OpenGL
specifics, especially during initialization.

• Support for loading, compiling and using GLSL fragment programs,
with correct reporting of compiler and linker errors.

• A stream oriented model for intuitively executing the steps of a GPGPU
algorithm.

• Loading and management of required OpenGL extensions.

• A number of standard shaders useful as building blocks of a larger
algorithm.

The basic object model of the library is shown in figure 2.1. The library is
documented in detail and some usage examples are provided in [18].

Since that library was developed, some advances towards better GPGPU
support have been made in OpenGL, and some new insight on performance
improvements was gained. Changes have been made to accommodate these.
They will be summarized in the following section.

2.2.2 Library Changes and Improvements

The most relevant change to OpenGL since 2004 was the introduction of
framebuffer objects, which both enhance performance by no longer causing
a complete OpenGL context switch and provide additional functionality. In
response, the GLRenderTexture class was completely reimplemented using
FBOs instead of pBuffers.
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Figure 2.1: GPGPU library object model.

In practical application, this change yielded the results shown in table 2.1.
While the gains are nearly non-existent at larger problem sizes of 5122 and
beyond, they are quite significant at sizes were the program was constrained
by context switching overhead. This is of particular importance for multigrid
methods – regardless of the initial problem size, the algorithm will always be
applied at grids of all sizes, down to a single grid cell.

16×16 64×64 512×512
Before 4481 3623 87
After 8165 5050 88
Improvement 55% 40% 1%

Table 2.1: FBO performance advantage over pBuffers. Numbers are itera-
tions per second.

Another improvement over the original framework, also aimed mainly
at increasing performance at smaller problem sizes, pertains to the actual
rendering operation carried out to apply a shading kernel. The concept is
illustrated in figure 2.2.

GPUs always compute a rectangular area – a batch – of pixels together.
These batches can be up to 4×4 pixels in size depending on the architecture.
When performing the rendering step intuitively, using a quad formed of two
triangles, performance will suffer along the dividing line. As the batch size is
constant the effect of this performance loss can be expected to be proportion-
ally greater at smaller framebuffer sizes. If, instead, a single triangle is used

20



Figure 2.2: Quad versus single triangle rendering.

as the rendering primitive batching should work uniformly over the whole
area. The parts of the primitive outside the view frustum get culled auto-
matically and do not have any measurable impact on performance. Table 2.2
shows the effects of this change.

16×16 64×64 512×512
Original 4481 3623 87
FBO 8165 5050 88
FBO & Tri 9718 5484 89
Improvement 19% 9% 1%

Table 2.2: Single triangle rendering performance advantage over quads.
Numbers are iterations per second.

While the improvement is not as significant as the one caused by the
switch to FBOs, it is still worthwhile, especially at very small sizes. There is
another interesting fact to note looking at the original values vis-à-vis those
after the improvement. Going from 642 to 5122 is an increase in computa-
tional effort by a factor of 64. In the unimproved framework, the actual factor
measured is just 42, suggesting that performance is suppressed by overhead
factors. After both enhancements, the measured factor is 62, very close to
the theoretical maximum.

Obviously, the scaling from 642 downwards is still very much limited by
overhead and aspects other than sheer GPU performance. This is a pattern
that plays a significant role for the coarsest levels of the V-cycle, and that
will be explored in more depth later.
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2.3 Auxiliary Requirements

Implementing the multigrid calculations directly would at this point be pos-
sible based on the improved framework described above. However, to judge
the accuracy of the computations, or even just determine whether the correct
result is being computed, a few more components are required. Namely, a
mechanism for writing data to, and reading it back from, the GPU’s memory,
and a way to visualize results. Both of these were implemented, and their
realization will be described in this section.

2.3.1 Data Input and Output

To facilitate writing arbitrary data to and from GPU memory two methods
were added to the GLRenderTexture class.

readData(data) Reads the whole amount of data from the FBO to the
user-supplied location. While this requires the caller to keep track of
the amount of memory needed, it was implemented this way to ensure
proper deletion of the allocated space.

writeData(data) Writes the supplied chunk of information to the FBO
represented by this object.

In the current implementation these methods use the conventional
OpenGL data transfer operations. It is assumed that transfer operations
appear infrequently enough that any performance improvements would be
insignificant. One enhancement would be using OpenGL Pixel Buffer Ob-
jects (PBOs) as described by Göddeke [6]. In any case, if at all possible,
initial data, boundary conditions and inhomogeneities should be computed
via pixel shaders rather than supplied manually, especially for big problem
sizes.

2.3.2 Visualization

For quickly judging whether a result is at all plausible and for debugging
visualizations of numerical results are very useful. In keeping with the
framework’s traditions as introduced in section 2.2.1, a new subclass of
GLFilterStep was added, GLVisualizationStep. It is designed to be ex-
pandable to different visualization types, but for now only heightfield visu-
alization is implemented. It is used via one of the following methods.

heightfield(*source, *target, lowbound = 0.0f, highbound = 1.0f)
Visualizes the numerical values provided by the source on the target,
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coloring values between lowbound and highbound with a smooth
gradient.

debugHeightfield(*source, msg, lowbound, highbound) The same as
above, but renders directly to screen and displays a supplied message.
Also halts program execution until a key is pressed. Useful for debug-
ging the individual steps of a more complex GPGPU algorithm.

The heightfield visualization process is implemented via a fragment pro-
gram that samples the numerical value provided in the source texture, scales
it according to the bounds supplied and uses it to select a color value from
a lookup texture. It is thus quite efficient and can also be used to animate
the progress of a solver. An example of the output that is produced by this
process is given in figure 2.3.

Figure 2.3: Heightfield visualizer example.

2.4 Main Algorithm Implementation

With all the preparative work now described, it is time to delineate the im-
plementation of the multigrid solver itself. In this section, first the individual
components of the algorithm will be examined, and finally it will be shown
how they fit together to form a complete multigrid solver.
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2.4.1 Restriction

Some of the simplest operations to implement are the various restriction
(fine-to-coarse transfer) methods. To facilitate these operations a helper
class MGRestrictStep was added. It provides the following static methods:

inject(*source, *target) Performs injection from source to target. For
this and the following two methods target is required to have a size

in the range
[⌊

s
2

⌋
,
⌈

s
2

⌉]
in both dimensions (with s being the width of

source), otherwise the scaling will not work correctly on all pixels.

half weight(*source, *target) Performs reduction via half-weighting.

full weight(*source, *target) Performs the full-weighting downscaling
operation.

GLRenderTexture* inject(*source) This inject operation creates the
downscaled buffer instead of requiring the user to supply it.

GLRenderTexture* half weight(*source) As above, but for the half-
weighting operation.

GLRenderTexture* full weight(*source) As above, but this time for
full-weighting.

These operations are very similar and not hard to implement, so only the
GLSL code for the full-weighting operation will be given in listing 2.1.

Listing 2.1: GLSL code implementing full-weighting.

1 uniform sampler2D tex0 ;
2 uniform f loat uni t ;
3

4 void main (void )
5 {
6 f loat u = uni t ∗ 0 . 5 ;
7 vec2 tc = vec2 ( gl TexCoord [ 0 ] ) ;
8 vec4 top = texture2D ( tex0 , tc+vec2 (0.0 ,−u) ) ;
9 vec4 bottom = texture2D ( tex0 , tc+vec2 ( 0 . 0 , u ) ) ;

10 vec4 l e f t = texture2D ( tex0 , tc+vec2(−u , 0 . 0 ) ) ;
11 vec4 r i gh t = texture2D ( tex0 , tc+vec2 (u , 0 . 0 ) ) ;
12 vec4 t o p l e f t = texture2D ( tex0 , tc+vec2(−u,−u) ) ;
13 vec4 top r i gh t = texture2D ( tex0 , tc+vec2 (u,−u) ) ;
14 vec4 bot tomle f t = texture2D ( tex0 , tc+vec2(−u , u) ) ;
15 vec4 bottomright = texture2D ( tex0 , tc+vec2 (u , u) ) ;
16 vec4 cente r = texture2D ( tex0 , tc ) ;
17

18 g l FragCo lor =
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19 ( 4 . 0∗ cente r + 2 .0 ∗ ( top + l e f t + r i gh t + bottom ) +
20 t o p l e f t + top r i gh t + bot tomle f t + bottomright ) / 1 6 . 0 ;
21 }

2.4.2 Interpolation

Bilinear interpolation is slightly more tricky to implement. Figure 2.4 shows
the composition of pixels on the finer level. As illustrated, one out of every
four pixels can be taken directly from the lower level, two are created by
adding two source values each with weights 1

2
and one by adding 4 with

weights 1
4
.

Figure 2.4: Interpolation pixel weights.

On CPUs, it is usually advantageous to use a 1D decomposition of the
process, first filling every second line by horizontal interpolation and then in-
terpolating vertically. This method reduces the number of repeated memory
reads and operations required.

On GPUs, which always work most efficiently when performing the same
calculations on all pixels of the target area, such a decomposition would be
wasteful. However, directly implementing scaling as shown in 2.4 is also not
a good method, as performing completely different computations depending
on the position of each pixel does not fit the GPU model well.

Figure 2.5 shows a better method, and the one that has been used in this
implementation. Each node is handled uniformly, by sampling (using the
nearest-neighbour method) four times at a small distance around its position
and calculating the mean of these four values. Obviously, this results in
the same weights as the naive version. Implementing the process in this
way may seem very inefficient, however nearly all duplicate reads of different
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Figure 2.5: GPU bilinear interpolation implementation.

nodes will be cached, and the small additional computations are masked by
memory latency on most hardware.

In benchmarks, the GPU-optimized method is nearly 3 times faster than
the intuitive, branching implementation on latest G80 hardware. The differ-
ence can be expected to be even greater on older GPUs.

For usage in the multigrid algorithm, the interpolation fragment program
has been combined with the addition of the result to the existing estimate.
This not only reduces the overhead caused by each rendering step, but also al-
lows us to use only three buffers at each grid level. The kernel for performing
both interpolation and addition is shown in listing 2.2.

Listing 2.2: GLSL code implementing interpolation and addition.

1 // Textures :
2 // tex0 − the t e x t u r e to i n t e r p o l a t e
3 // tex1 − the a d d i t i v e t e x t u r e
4

5 uniform sampler2D tex0 ;
6 uniform sampler2D tex1 ;
7 uniform f loat uni t ;
8

9 void main (void )
10 {
11 vec2 co = vec2 ( gl TexCoord [ 0 ] ) ;
12 f loat u = uni t ∗0 . 2 5 ;
13 vec4 a = texture2D ( tex0 , co+vec2(−u,−u) ) ;
14 vec4 b = texture2D ( tex0 , co+vec2 (u,−u) ) ;
15 vec4 d = texture2D ( tex0 , co+vec2 (u , u) ) ;
16 vec4 c = texture2D ( tex0 , co+vec2(−u , u) ) ;
17

18 g l FragCo lor = ( a+b+c+d) ∗0 .25 + texture2D ( tex1 , co ) ;
19 }
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2.4.3 Smoothing

Inarguably the most important step of the multigrid algorithm is smoothing,
as it is the one actually causing the method to converge to the desired solu-
tion. In section 1.1.3 the choice of ω-Jacobi as the solver used in for relaxation
was made. For the model problem a single step of Jacobi approximation is
then defined as

z(x, y) =
1

4
[h2f(x, y) +

un(x− h, y) + un(x + h, y) + uh(x, y − h) + uh(x, y + h)]

un+1(x, y) = un(x, y) + ω[z(x, y)− un(x, y)]

with h = 1/n. Translating this equation to shader code is fairly straight-
forward. The result is listed in 2.3. Note that h is passed to the fragment
program in already squared form, as performing that multiplication for each
pixel would be superfluous.

Listing 2.3: Fragment shader to perform one step of omega-jacobi relaxation
for poisson equations.

1 // Textures :
2 // tex0 − the curren t e s t imate
3 // tex1 − the r i g h t s i d e o f the po i s son equat ion
4

5 uniform sampler2D tex0 ;
6 uniform sampler2D tex1 ;
7

8 uniform f loat uni t ;
9 uniform f loat hsquare ;

10 uniform f loat omega ;
11

12 void main (void )
13 {
14 vec2 co = vec2 ( gl TexCoord [ 0 ] ) ;
15 vec4 top = texture2D ( tex0 , co+vec2 (0.0 ,− uni t ) ) ;
16 vec4 bottom = texture2D ( tex0 , co+vec2 ( 0 . 0 , un i t ) ) ;
17 vec4 l e f t = texture2D ( tex0 , co+vec2(−unit , 0 . 0 ) ) ;
18 vec4 r i gh t = texture2D ( tex0 , co+vec2 ( unit , 0 . 0 ) ) ;
19 vec4 cente r = texture2D ( tex0 , co ) ;
20 vec4 f = texture2D ( tex1 , co ) ;
21

22 vec4 z = 0.25 ∗ ( hsquare ∗ f + l e f t + r i gh t + top + bottom ) ;
23 g l FragCo lor = cente r + omega∗( z−cente r ) ;
24 }
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2.4.4 Residual Calculation

Calculating the residual or defect is central to the coarse grid correction
concept. The defect equation for our model problem is given by

dh = fh −∆huh

which expands to

d(x, y) = f(x, y)− 1/h2[4uh(x, y)− uh(x− h, y)− uh(x + h, y)

−uh(x, y − h)− uh(x, y + h)]

when fixing h and applying the five-point discretization to ∆. Again, trans-
ferring this equation to a fragment program is straightforward, the result is
shown in listing 2.4. Note that the computational effort required for this step
is very similar to that of the Jacobi implementation above.

Listing 2.4: GLSL code for residual calculation.

1 // Textures :
2 // tex0 − the curren t e s t imate
3 // tex1 − the r i g h t s i d e o f the po i s son equat ion
4

5 uniform sampler2D tex0 ;
6 uniform sampler2D tex1 ;
7

8 uniform f loat uni t ;
9 uniform f loat hsquare ;

10

11 void main (void )
12 {
13 vec2 co = vec2 ( gl TexCoord [ 0 ] ) ;
14 vec4 top = texture2D ( tex0 , co+vec2 (0.0 ,− uni t ) ) ;
15 vec4 bottom = texture2D ( tex0 , co+vec2 ( 0 . 0 , un i t ) ) ;
16 vec4 l e f t = texture2D ( tex0 , co+vec2(−unit , 0 . 0 ) ) ;
17 vec4 r i gh t = texture2D ( tex0 , co+vec2 ( unit , 0 . 0 ) ) ;
18 vec4 cente r = texture2D ( tex0 , co ) ;
19 vec4 f = texture2D ( tex1 , co ) ;
20

21 g l FragCo lor = f − ( 4 . 0 f ∗ cente r
22 − top − bottom − r i g h t − l e f t ) / hsquare ;
23 }

2.4.5 Boundary Conditions

One reason for the Jacobi smoothing implementation shown above being
quite simple is that it completely disregards boundary conditions. This is
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possible because GPUs allow a variety of ways for indirectly dealing with
them. It is also advantageous in terms of performance, because as SIMD
architectures GPUs are most efficient when they can treat each node identi-
cally.

Homogeneous Dirichlet boundary conditions are implemented using
the OpenGL GL TEXTURE BORDER COLOR property. It can be employed to set
the borders to the desired value. Then the texture wrapping behavior can
be changed to GL CLAMP TO BORDER, in effect causing all reads outside of the
designated area to return the boundary value. To use these properties, two
methods were added to the GLRenderTexture class:

setBorderColor(color) Changes the border color of the texture associated
with this buffer to the supplied floating point value.

setClampToBorder() Sets both the horizontal and vertical clamping be-
havior to clamp to border.

Using this method, the grid size at level n must be set to 2n − 1. The
border can be omitted, so starting from the coarsest level, grids of size 12,
32, 72, etc. will be treated.

Inhomogeneous Dirichlet boundary conditions can be simulated in
a wider variety of ways.

• Causing the fragment program to conditionally omit pixels on the
boundary, thus ensuring they stay constant. This requires undesirable
branching in the pixel shader.

• Recreating the boundaries after each pass of the smoothing operator.
Also not ideal, as it introduces additional drawing operations with their
own overhead.

• Drawing only to the area of the target surface that actually should be
changed. This allows keeping the shader identical across all fragments
and does not require additional operations.

The final possibility is obviously preferable. It could intuitively be realized
by just rendering a smaller quad. However, that would make the triangle
rendering optimization described in section 2.2.2, which provides significant
performance gains for small grids, impossible to realize.

A better way to implement this method was found in the OpenGL scissor
rectangle. This antique OpenGL property allows the user to define a rect-
angular area outside of which all drawing will be suspended. It is enabled
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by GL SCISSOR TEST and the area is defined via the glScissor function. To
facilitate its use, only a small change in GLFilterStep was required, and the
addition of one more method to GLRenderTexture:

setBorderPixel(n) Defines n pixels around the edges as an unchangeable
border.

Testing has shown that enabling the scissor rectangle with a one-pixel bor-
der causes no perceptible performance difference. However, it is important to
note that slightly larger grids have to be used compared to the homogeneous
case. In particular, the grid side length at level n must be set to 2n + 1 to
accommodate the additional border pixels, making the coarsest grid 32 in
size.

Other types of boundary conditions have not been implemented in this
work. However, homogeneous Neumann conditions should be fairly easy to
implement on GPUs by adjusting the texture wrapping behavior. More com-
plex variations require individual treatment of the edge cases – Goodnight
et al. [7] have demonstrated some.

2.4.6 The Complete Multigrid Solver

All individual components of significance to the multigrid cycle have now
been described. What remains is taking these parts and using them to form
a correct numerical solver. Recalling the multigrid method described in 1.1.2,
the process shown in figure 2.6 can be derived.

The first fact to note from the illustration is that, at each level, three
buffers are required. This is caused by OpenGL disallowing – with good
reason – rendering to a buffer that is also bound as an input texture. If
interpolation and addition had not been combined, four buffers would have
been required. However, due to the pre- and postsmoothing processes and
the need to retain f , the right-hand side of the equation, during those, it is
not possible to reduce the number below three regardless of optimizations.

The solver is implemented in the class MGPoissonSolver. It contains the
following public methods:

MGPoissonSolver(*rightside, bordervalue, h, pre, post, omega)
The constructor of a solver for Poisson equations with homogeneous
Dirichlet boundaries. It requires the right hand side of the equation,
the boundary value and discretization width at the finest level –
the latter determines the size of the calculation area. The other
parameters are optional and determine the amount of pre- and
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Figure 2.6: GPGPU Multigrid cycle.
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postsmoothing steps and the relaxation parameter of the Jacobi
smoother, respectively.

The constructor verifies that the parameters are correct, allocates and
populates all required buffers and loads and compiles the fragment pro-
grams corresponding to the required operations. After it has finished
the solver is ready to run.

∼MGPoissonSolver() The destructor deletes all the allocated buffers and
fragment programs, freeing GPU memory.

vCycle(level) Runs the process shown in figure 2.6 on the designated grid
level. This method contains the main part of the algorithm. It sets up
the correct shaders and buffers for all operations required and executes
them in the correct order. Smaller grids are solved recursively unless
the coarsest level has been reached.

run(iterations) Repeatedly calls vCycle at the finest level, thus executing
a number of iterations of multigrid approximation. In most cases, the
user will only need the constructor, this method and the following one.

GLRenderTexture* getResult() Returns the current result of the multi-
grid approximation. At the beginning, before any call to run, this
equals the initial guess, which is chosen to be zero in the current im-
plementation.

benchmark() Not part of the actual computational process, this method
times the execution of each individual operation as well as the full V-
cycle and reports the results. Most results shown in chapter 3 were
obtained this way.

One element that would be useful in practice but has been omitted here
because it is not relevant to computational performance analysis would be
a run method that continues to iterate until the “error” has fallen below a
certain threshold. This would involve accumulating the difference between
the current and previous approximations every n iterations. On GPUs, this
process itself would have to be iterative, as only a limited number of texture
accesses can be carried out in one pixel shader.

2.5 Alternatives: CUDA

While a complete reimplementation based on CUDA, which was only publi-
cally released some time after programming on this thesis had already started,
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would go beyond the scope of this work, it still merits some interest to look
at the possibilities afforded by such an API. Most of this section applies
to ATI’s CTM as well, though it has been based on the CUDA technical
documentation [5].

CUDA offers a C-like language with some extensions that allow the user
to schedule programs for execution on GPU multiprocessors. The central
advantages of this more direct approach compared to traditional GPGPU
development with DirectX or OpenGL are as follows:

• More direct control over the destination of writing operations. This en-
ables important stream processing operations like scatter. In practice,
for multigrid, it would mean that – for example – interpolation could
be efficiently implemented like on CPUs.

• Unrestricted access to all memory levels, including on-chip cache.

• A unified programming environment for both host (CPU) and client
(GPU) code that requires no knowledge of graphics APIs.

• Elimination of graphics-related overheads.

However, at this point in time there are also a few drawbacks:

• Global memory accesses need to follow specific patterns to enable coa-
lescing, otherwise severe performance reductions can be expected.

• Some hardware features accessible by graphics APIs can not be used
via CUDA as of yet.

• No automatic caching of most memory read types.

• Unlike OpenGL and GLSL, not cross-vendor compatible.

It can be assumed that, for a Jacobi-based standard-coarsening method like
the one examined in this work most enhancements provided by CUDA would
be caused by the elimination of overheads. For other algorithms like GS-RB
based solvers or problems with more complex boundary conditions CUDA
can provide very significant improvements – even going so far as making
previously unpractical algorithms, for example those that rely on scatter
operations, feasible on GPUs.

33



Chapter 3

Performance Evaluation

As determined in Chapter 1, the prime motivator for implementing numerical
methods on GPUs is performance. In this chapter, the performance of the
GPGPU multigrid implementation described in chapter 2 will be examined.
At first a quick explanation of how the measurements were obtained will be
given, then the overall performance of the full algorithm and its individual
components will be presented in detail for a single architecture.

After these basic values are established, benchmark data obtained from
systems with a variety of GPUs will be compared, and some of the differences
analyzed. Another comparative section will concern itself with the perfor-
mance of the GPU implementation vis-à-vis a conventional CPU version of
the same algorithm. Finally, venues for additional optimization uncovered
by the gathered data will be explored.

3.1 Notes on Benchmarking

To facilitate gathering a wide range of results from various platforms, a stand-
alone noninteractive benchmarking application was developed and released1.
The test case used is an instance of the model problem with homogeneous
Dirichlet boundary conditions, the V-cycles are configured to perform two
steps of pre- and a single one of postsmoothing.

The application first runs a test to verify that correct results are obtained
– this is required to exclude benchmarking data from platforms that do not
perform the correct calculations, but do also not report an error, which is the
case for some hardware/operating system/driver combinations. It then car-
ries out some “warm-up” iterations that make sure that all required shaders

1The benchmark was made available in the GPGPU subsection of the Beyond3D hard-
ware discussion forum, located at http://forum.beyond3d.com/.
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are loaded and reduce driver and cache initialization impacts during the first
real benchmarking iterations.

Finally, the following measurements are taken: for each of 2n+1 − 1, n
ranging from 1 to 10, the time to execute one step of ω-JAC, residual cal-
culation, full weighting, interpolation & addition and a complete V-cycle is
recorded in a log file. Here, finding a good balance between accuracy and
runtime of the program was important, so the individual step benchmarks are
performed (11−n)·1000 times, while the full V-cycle is tested for (11−n)·100
iterations. Before and after these loops, the time is taken using the Windows
system API function GetSystemTimeAsFileTime. The final result is com-
puted by dividing the time obtained by the number of iterations performed.
This whole process is repeated three times for each data point.

3.2 Component Performance

Knowing the performance of the individual components of the algorithm al-
lows us to judge more effectively which components may be optimized to
significantly alter the overall runtime. Unless otherwise noted, all measure-
ments in this section were obtained on the primary development system,
comprised of an Athlon64 X2 CPU and NVIDIA GeForce 8800 GTS GPU.

Table 3.1 shows the values achieved by each component at different levels
of discretization. They are given in time (in µs) per iteration of the operator
in question. For V-cycle, this means a complete cycle through the given
discretization, all coarser levels, and back up. There are a few relationships
between these numbers that merit detailed examination, so they will each be
discussed in an individual section.

Component 63 127 255 511 1023
ω-JAC 4.6 15.6 62.5 250.0 1045.3
Residual 67.2 67.2 92.2 335.9 1351.5
Full weighting 70.3 70.3 75.0 226.6 865.7
Half weighting 71.9 70.4 70.3 176.6 576.5
Injection 71.9 71.8 71.9 78.1 257.8
Interpolation & Add 67.2 65.7 65.6 225.0 857.9
VCycle 3937 4593 5360 6484 13078

Table 3.1: Performance of multigrid components. Numbers are µs per itera-
tion.
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3.2.1 Scaling with Problem Size

One very important factor in judging the efficiency of an implementation is
its scaling behavior with regards to problem size. When giving an overview
of the massively parallel GPU architecture in chapter 1 it was already noted
how scaling problems should be expected at smaller problem sizes. Now that
the numbers are available, it is time to examine whether this speculation
holds.

Figure 3.1 shows the scaling behavior of each of the components mea-
sured. Values were normalized to each respective maximum at 10232. As the
workload increases quadratically along the measurement sizes, the chart uses
a logarithmic scale.

Figure 3.1: Scaling behavior of multigrid components.

From this representation the following observations can be made:

• All single components scale nearly perfectly from 10232 to 5112. Most,
except for injection – which is not used in practice – also scale ade-
quately to 2552.

• This, however, does not imply that the complete V-cycle also scales
well at those sizes. The fact that it does not is easily explained by it
requiring calculations at all granularities.

• Jacobi-based smoothing scales almost perfectly.
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• On the other hand, residual calculation, a very similar process, all but
stops scaling below 2552. This warrants further investigation.

• Both transfer operations, restriction and interpolation, are completely
limited by outside factors at 2552 and below, as evidenced by their
iterations taking nearly the same amount of time at that size as they
do at 632 – where only 1/16 as much work has to be performed!

The positive aspect is shown by the Jacobi numbers: it is indeed possible to
provide near-perfect scaling down to 632 at least. Now the essential question
is why the other components do not exhibit the same behavior. But before
that, the relations between the times measured for each component should
be illuminated.

3.2.2 Expected Workload versus Measured Perfor-
mance

To identify bottlenecks it is useful to compare the benchmark results of the
individual methods with their expected relative performance based on work-
load. This is best done at 10232, where external limitations are marginalized.
Figure 3.2 shows a visual comparison of the values achieved by the various
operations at that size.

Figure 3.2: Comparison of component performance at 10232 nodes.

The most directly comparable results are Jacobi smoothing with residual
calculation, and the three restriction methods amongst each other.

• The smoothing and residual calculation kernels each sample a five-point
stencil from one texture, and a single point from another. They then
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perform a comparable amount of additions and multiplications on the
data. The only significant difference that could explain the variation
in performance is a division by h2 in the residual calculation shader.
This will be examined in section 3.2.4.

• Full weighting, half weighting and injection are nice cases for perfor-
mance analysis: they each perform nearly the same operation, but on
a different amount of values. They all take a number of samples and
then perform a weighted interpolation of those. Full weighting takes
nine, half weighting five and injection one. Though injection is not nine
times as fast as full weighting, the measurements fall in line with these
expectations.

• The interpolation and addition step is slightly harder to judge, as there
is no directly comparable operation. However, Jacobi smoothing comes
reasonable close – both take some samples from one texture and a single
one from another, and then perform arithmetic operations on them.
Interpolation takes one less sample, but more importantly samples a
smaller texture and should thus have a cache advantage. Therefore
its performance level at around 22% faster than Jacobi iterations is
acceptable, if a bit slower than expected.

On a whole, the relative results between components are more expected and
easily explained than the individual scaling results shown previously.

3.2.3 V-cycles as Sums of Components

In our multigrid implementation, the workload for each grid element is con-
stant regardless of grid level. Combined with the grid size reduction to 1

4

caused by standard coarsening, this observation leads to the conclusion that
at most 1

3
of the time spent for one full V-cycle starting at level n should be

spent at levels below n. More specifically, the portion of work at lower levels
is given by the formula ∑n−1

a=1(2
a − 1)2

(2n − 1)2

which converges to 1
3

for n →∞, and reaches 0.33 for n = 9.
Using this approximation, we can determine how much inefficiencies at

smaller grids influence the total runtime. One complete V-cycle in our exam-
ple runs the following operations at the finest level: three Jacobi iterations,
one residual calculation, and one each of full weighting and interpolation, the
two transfer operations. With these values and the results gathered in table
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3.1 the efficiency ratings shown in table 3.2 were derived. The “Component
Sum” is determined by taking the single-step results of the operations listed
above at the specified level and summing them up. “2/3 V-cycle time” are
two thirds of the V-cycle at that level, as per the explanation in the previous
paragraph. Figure 3.3 illustrates these results.

63 127 255 511 1023
Component Sum 218.500 250.000 420.300 1537.500 6211.000
2/3 V-cycle time 2624.667 3062.000 3573.333 4322.667 8718.667
Efficiency 8.32% 8.16% 11.76% 35.57% 71.24%

Table 3.2: Efficiency of GPU multigrid implementation compared to theo-
retical optimum.

Figure 3.3: Ideal theoretical versus measured V-cycle performance.

While not entirely unexpected after the scaling behavior observed in sec-
tion 3.2.1, these results are still disappointing. Though a high-performance
implementation is usually required only for large problem sets, one could
imagine an application where solving a large number of smaller equations
fast is required. In that case, an efficiency of around 10% greatly detracts
from the utility of a GPGPU implementation.
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3.2.4 Optimizations Based on Component Bench-
marks

In section 3.2.1 it was shown that, while Jacobi smoothing scales well to
coarse grids, all other components exhibit low efficiency at grid sizes below
2562. Shortly after, in the following section, we found that – while most
operators behave as expected in terms of relative performance – residual
calculation is slower than anticipated. In this section, an attempt will be
made at reducing these problems.

As noted earlier, the only major difference in the shader programs for
smoothing and residual calculation is that the latter contains a division
operation. However, eliminating that devision by replacing the parameter
hsquare with rhsquare, its reciprocal, did not change measured perfor-
mance. Restructuring the code to be even more similar to the Jacobi kernel
did also not alter the runtime behavior in a meaningful way.

Not satisfied with this result, a next step was to make the benchmarking
conditions as equal as possible. The original measurements were taken using
the same buffers as those used in the actual computation. This resulted Ja-
cobi smoothing and residual calculation running in different directions each,
that is, one’s source was the other’s target and the other way around. Equal-
izing this aspect resulted in Jacobi smoothing taking longer, while residual
computation got faster. In the end, both were within 2 microseconds per
iteration at each grid size – as expected from such similar operations in the
first place.

How or why this happens is not completely clear. As both operation’s
times are affected by changing the buffer order of just one of them, one reason
could be a bizarre cache effect. However, all such should be eliminated by
the benchmark process, which preforms 10000 iterations of each operator.
At this point, further investigation of this matter was postponed for two
reasons: firstly, it would require intricate knowledge of the hardware and
OpenGL driver behavior, and secondly, improving the scaling behavior of all
operations except Jacobi smoothing was deemed more important.

Improving performance at coarse grid levels is an exercise in reduc-
ing overhead. The fundamental observation in this case was that, while
Jacobi scores remained largely unaffected by the C++ program’s compila-
tion options2, the time required to run those operations that did not scale
well changed when switching compiler optimizations on and off. In other

2Specifically, the differences were observed using Visual C++ 2005 and switching be-
tween debug builds (no optimizations, debug symbols included) and release builds with
full optimization.
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words, their execution was CPU limited – and not in the driver, but in the
program!

Based on this knowledge, the following changes were made:

• Operations that were used via helper objects like the transfer methods
were re-integrated into the main method of the algorithm or performed
via static member functions. While not as clean from a program design
standpoint, this proved quite effective.

• The central VCycle method was completely rewritten, with each line
examined as to its purpose and necessity.

• Two static methods were added to GLFilterStep: direct(source,

shader, target) and direct2s(s1, s2, shader, target). These
allow the direct use of shaders from one or 2 buffers to another and
forgo many of the requirements of the general method, like exhaustive
error checking and variable argument lists.

The complete listing of the new results after these changes is gathered in table
3.3. The changes were very effective at improving performance at coarser grid
levels, as shown by table 3.4. Note that the unused restriction methods were
no longer benchmarked, and that an additional coarsest level of 312 grid
points was added to the test run.

Component 31 63 127 255 511 1023
ω-JAC 3.0 3.1 14.1 60.9 243.7 967.2
Residual 3.1 4.7 17.2 78.1 314.1 1259.4
Full weighting 3.1 3.2 14.1 57.9 240.6 964.1
Interpolation & Add 3.2 3.1 12.5 54.6 220.3 881.2
VCycle 2203 2672 3203 3813 4782 14022

Table 3.3: Performance of multigrid components after overhead reduction.
Numbers are µs per iteration.

63 127 255 511 1023
Before Optimizations 3985 4627 5537 6601 14178
After Optimizations 2672 3203 3813 4782 14022
Improvement 49,14% 44,46% 45,21% 38,04% 1,11%

Table 3.4: Improvements to overall V-cycle times due to overhead reduction.

Charting the scaling behavior on a logarithmic scale like in section 3.2.1
shows a far more agreeable picture than before. As depicted in figure 3.4, all
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operators now scale near optimally down to 632, the coarsest level measured
previously. From there on, workload does no longer seem to matter and
the limitations lie elsewhere again. What could be done to further increase
performance and decrease the impact of these remaining inefficiencies is dis-
cussed in section 3.6. These limitations at the very lowest levels, together
with some fixed switching costs that are hard to remove, render the complete
V-cycle – while certainly faster than before – not nearly as enhanced as the
sum of its parts.

Figure 3.4: Scaling behavior of multigrid components.

3.3 Comparison Among GPUs

The main testing system used throughout this work contains an NVIDIA G80
GPU. While that is a good baseline for optimization-related and comparative
performance analysis, one of the greatest advantages of using OpenGL and
GLSL for the implementation is that it is capable of running on a wide variety
of graphics solutions. In this section, results gathered from different GPUs
will be compared.

Before starting to present numbers, recall the testing methodology de-
scribed in section 3.1. It was used to obtain all the results forthcoming.
When more than one set of results from comparable platforms was available,
the median results are used in the following analysis.
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In table 3.5 all the V-cycle results are summarized. Obviously wrong3

results are excluded and marked as “Wrong”. Results marked as “Failed”
on the other hand signify that the driver produced some error or that the
system crashed. Also, the very small sizes, 312 and below, should be mostly
disregarded here, as they are more influenced by CPU speed and driver over-
head than GPU performance and have little practical relevancy. Note that
only G80-derived GPUs could complete the benchmark at the finest tested
grids of 20472 nodes. This is most likely due to a driver or GPU addressing
limitation and not memory capacity problems, as even 8800 cards with only
320 MB of on-board memory were able to complete this test, while other
boards equipped with 512 MB or more failed to do so.

Based on these numbers a multitude of observations can be made. Some
particular aspects will be discussed in the following subsections. When it
is more practical to compare the GPUs at only one size, 5112 or 10232 will
be used. At those dimensions, most systems are already limited by GPU
performance rather than driver and CPU overhead, but they could still be
completed by most tested cards.

3.3.1 Vendor-specific GPU Progression

In figure 3.5 the performance of various NVIDIA GPUs is illustrated. Results
obtained running the benchmark on 8000-series GPUs in Windows Vista are
excluded, as they seem incomparable to XP results – most likely due to driver
problems.

Looking at the remaining results and at comparable GPUs, the perfor-
mance improvement from the 6000- to the 7000-series is slightly above factor
two, while going from 7000 to 8000 shows a nearly fivefold increase. This
result is impressive but not unexpected: many of the architectural changes
made to G80, as detailed in [4], are very well suited to GPGPU processing.

The situation on the corresponding ATI chart shown in figure 3.6 is more
complex. While the scores for the 1000-series cards follow expectations4,
the 2900 XT results fall far short. The most likely reason for this behavior
are immature drivers: the 2900 XT series was released very recently, so
the drivers may still be missing optimizations for rare use cases, like those
presented by this multigrid benchmark.

3Some ATI drivers – the 8.37 series specifically – reported results of less than 100µs at
10232 and beyond, while not performing any work at all. Also, some cards reported faulty
numbers at 20472.

4Based on the relative amount of computational resources and bandwidth available.
One comprehensive resource for such information are the Beyond3D GPU tables available
at http://www.beyond3d.com/resources/.
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GPU (clocks) & OS 3 7 15 31 63
NV 6800 GT XP 797.0 1354.4 1875.0 2522.9 3125.0
NV 7600 GT XP 609.4 1024.3 1484.4 1875.0 2395.8
NV 7900 GTX Vista64 2819.0 4681.1 6608.8 8515.7 10383.3
NV 8600 GTS (720/1050) Vista 6443.0 10850.0 15093.8 19545.7 24336.7
NV 8800 GTS 640 (525/830) XP 1532.0 2483.3 3437.5 4375.7 5363.3
NV 8800 GTX Vista 6391.0 10660.0 15605.0 19732.9 24350.0
NV 8800 GTX XP 391.0 660.0 937.5 1205.7 1485.0
NV 8800 GTX (670/1050) XP 344.0 590.0 801.3 1048.6 1301.7
ATI 1600 Mobile XP 640.6 1059.1 1464.9 1942.0 2708.4
ATI 1600 XT XP 562.0 937.8 1347.5 1718.6 2318.3
ATI 1900 GT XP 421.9 694.4 996.1 1294.6 1666.7
ATI 1900 XT Vista 334.0 543.6 753.1 965.3 1178.3
ATI 1950 XT XP 656.0 1076.7 1523.8 1941.4 2448.3
ATI 1950 XTX CF XP 375.0 607.8 858.8 1115.7 1406.7
ATI 2900 XT XP (Cat 7.5) 328.1 555.6 761.7 959.8 1171.9
ATI 2900 XT Vista 446.0 725.6 1020.0 1290.0 1598.3
ATI 2900 XT Vista64 (8.38) 245.0 401.1 552.5 714.3 861.7
ATI 2900 XT Vista64 (8.39) 827.0 1560.0 2301.3 3075.7 3821.7
GPU (clocks) & OS 127 255 511 1023 2047
NV 6800 GT XP 3938.0 8400.0 35520.0 165470.0 Failed
NV 7600 GT XP 3031.3 5820.3 23177.1 114453.0 Failed
NV 7900 GTX Vista64 12372.0 15917.5 26433.3 76145.0 Failed
NV 8600 GTS (720/1050) Vista 29952.0 40170.0 70200.0 191490.0 Failed
NV 8800 GTS 640 (525/830) XP 6312.0 7617.5 10106.7 24765.0 154220.0
NV 8800 GTX Vista 28718.0 34882.5 44686.7 82970.0 236410.0
NV 8800 GTX XP 1782.0 2227.5 3856.7 15855.0 94850.0
NV 8800 GTX (670/1050) XP 1562.0 1952.5 3540.0 14530.0 86100.0
ATI 1600 Mobile XP 5281.4 19336.4 84012.6 Failed Failed
ATI 1600 XT XP 3844.0 13672.5 40676.7 135470.0 Failed
ATI 1900 GT XP 2218.8 5117.2 10729.2 Failed Failed
ATI 1900 XT Vista 2210.8 9594.1 38747.5 154385.0 Wrong
ATI 1950 XT XP 3220.0 4805.0 11250.0 30155.0 Failed
ATI 1950 XTX CF XP 2000.0 4647.5 18803.3 98205.0 Failed
ATI 2900 XT XP (Cat 7.5) 1937.5 5546.9 31041.7 128047.0 Wrong
ATI 2900 XT Vista 1894.0 4380.0 22086.7 89600.0 Failed
ATI 2900 XT Vista64 (8.38) 1056.0 4525.0 22576.7 89760.0 Wrong
ATI 2900 XT Vista64 (8.39) 4556.0 8852.5 32863.3 129405.0 Wrong

Table 3.5: Mean V-cycle times for various GPUs.
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Figure 3.5: Scaling over generations of NV GPUs. Numbers are µs per
V-cycle at 10232.

Figure 3.6: Progression of ATI GPUs. Numbers are µs per V-cycle at 5112.
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Another slightly disappointing data point from the graph is that CrossFire
– an ATI technology to use two graphics cards in conjunction for rendering –
not only fails to increase performance, but apparently reduces it. This is not
too surprising, because the techniques used to split work between two GPUs
are probably not designed to work with fairly small FP32 non-framebuffer
rendertargets.

3.3.2 Operating System and Driver Influence

One interesting, repeatable pattern discovered during testing was that oper-
ating system and driver versions often had a profound impact on the per-
formance of otherwise identical hardware. While some correlations could be
expected, their magnitude is quite surprising. Figure 3.7 shows some of the
largest discrepancies.

Figure 3.7: Driver and OS dependency of results. Numbers are µs per V-
cycle at 5112.

The results can be summarized as follows:

• On nearly all test systems, results for the same GPU were better on
Windows XP than Windows Vista.

• The difference was particularly pronounced for NVIDIA 8-series cards
and ATI cards before the HD 2900 XT.
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• The performance of the HD 2900 XT varied widely between even minor
driver revisions. As speculated in section 3.3.1, one likely reason for
this are immature drivers for such a recently released architecture.

The Vista results are quite bad across the board – this can be attributed
to vendors having difficulty adapting their drivers to the new model. For
NVIDIA 8800 GTX cards the difference even reaches factor 8. The only
conclusion to draw from this is that, at the moment, Windows XP is a far
more viable system for OpenGL-based GPGPU efforts than Vista.

3.3.3 Cross-Vendor Comparison

Figure 3.8: Results of cards by both vendors, sorted by speed. Numbers are
µs per V-cycle at 5112.

After examining each individual vendor’s performance evolution over time
and the additional factors introduced by OS and driver choice it is now time
to compare the results of GPUs by both ATI and NVIDIA directly. Because
of the findings presented in the previous section, only results obtained run-
ning in Windows XP are used for this comparison. Figure 3.8 illustrates the
most salient of those.

While the competition was fierce in the previous generation of GPUs,
currently the G80-based cards are out of reach for any other solutions.
This may still change with future ATI drivers for the 2900 XT, but a com-
plete turnaround seems very unlikely. For now the only recommendation for
OpenGL-based multigrid processing that can be made based on these results
are NVIDIA 8800-series cards.
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3.4 CPU ↔ GPU comparison

GPGPU implementations are in nearly all cases more complex to realize
than CPU programs. In chapter 1 it was determined that the main reason to
still implement them is an expectation of higher performance for massively
parallel streaming processes. In this section, it will be examined whether the
results follow this speculation.

Before presenting the numbers, there are some important facts to note to
put this comparison into perspective:

• The test system is an Athlon64 X2 4400+ with a GeForce 8800 GTS.

• The CPU program is a standard C implementation with full compiler
optimizations, compiled with Visual C++ 2005. No SIMD instructions
or threading are used. On the given CPU, those could be expected to
provide a performance boost of about factor 4, if there are no memory
bandwidth limitations before that.

• As explained in section 2.1, as of yet, the GPU version uses RGBA
buffers – in practice doing nearly 4 times as much work as required.

After these facts have been established, here are the results. Table 3.6
shows a comparison of the results of both implementations at a problem size
of 5112 nodes at the finest grid.

Component CPU GPU
ω-JAC 8438.0 243.7
Residual 7656.0 314.1
Full weighting 1906.0 240.6
Interpolation & Add 6391.0 220.3
VCycle 51642 4782

Table 3.6: Comparison of CPU and GPU solver at 5112.

Obviously the GPU implementation is much faster in this specific case.
However, there are a few interesting facts to note beside that result:

• The CPU full weighting implementation uses the decomposition opti-
mization impossible on GPUs, giving it a distinct performance advan-
tage in the comparison vis-à-vis the other components.

• While the GPU is on average about 25 times as fast at running the
components of the algorithm at the full size grid, in real application –
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running a full V-cycle – that advantage is reduced to factor 10. This
can most likely be attributed to the GPU inefficiencies at smaller grid
sizes identified earlier.

• In section 3.2.3 it was observed that on the GPU, summing up the
component times at the highest grid level does not even come close
to reaching the expected 2

3
of the full V-cycle time. On the CPU,

that sum is 41267 while the expected value is 36681. Not only does
the CPU version not have inefficiencies at coarse grids, it actually gets
more efficient. This is explained by cache effects – smaller grids are
more likely to fit into the L2 cache.

These points lead to the suspicion that the GPU implementation’s ad-
vantage will quickly dwindle at smaller problem sizes. Indeed, as table 3.7
illustrates, the GPU version only starts to have the advantage at 2552 and
beyond. At smaller sizes, the CPU is significantly faster. The scale of the
difference, both at the small and large problem sizes is shown graphically in
figure 3.9. This is not as bad as it may appear – usually, a high performance
implementation is only needed for sizable problems.

Component CPU GPU
32 3.0 750.0
72 7.0 1188.0
152 25.0 1703.0
312 56.3 2187.0
632 204.3 2672.0
1272 1181.0 3203.0
2552 7425.0 3813.0
5112 51889.4 4782.0
10232 370160.0 14022.0

Table 3.7: CPU and GPU performance at different problem sizes.

The very small sizes below 322 were not included for their practical rele-
vancy on their own, but rather because they are still required as part of the
solvers at finer grids. This motivates an optimization that will be discussed
in the following section.

Taking into account the results shown in table 3.7, it can be concluded
that – for the specific system tested – GPU implementations only really start
to make sense at problem sizes of 5122 and beyond. However, at these fine
grid levels the difference is very significant, ranging from factor 10 to 25 for
a full V-cycle. It is hard to imagine such a difference being overcome even by
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Figure 3.9: Logarithmic illustration of CPU and GPU solver scaling behavior.

the most optimized and multi-core capable CPU program. Of course these
specific results are only valid for the tested system. For other CPU/GPU
combinations the exact point where the GPU gains the advantage may well
vary, but the overall trends would be similar.

3.5 CPU/GPU Combined Solving

The idea of using both CPU and GPU in combination to run a multigrid
algorithm has been explored before [9], however, in that case a parallel solver
was considered. The results presented in the previous section, in particular
figure 3.9, motivate a different approach: instead of solving different problems
or subdomains of the same problem on GPU and CPU, it should prove more
advantageous to solve finer grid levels on the GPU and coarser ones on the
CPU.

While this will introduce an additional speed penalty for transfers and
synchronizations, the former should be quite small at coarse enough grids,
where, for example, only 322 grid points need to be transferred – 16MB of
data. At the same time, as per table 3.7, there are still significant gains to be
made by moving those very small levels to the CPU. Figure 3.10 illustrates
the concept.

The idea is to run the algorithm as usual until some specific level – the
switching point – is reached. Then, use the data transfer methods described
in section 2.3.1 to transfer the current state of the approximation to the
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Figure 3.10: GPU and CPU combined V-cycle.

CPU. The coarser grid levels down to 1x1 and back up to the switching
point are then calculated by the CPU-based solver. Finally, the result of
that operation is written back to the GPU.

Now, there are two central questions about this theoretical approach.
Firstly, will the performance gained by reducing the impact of GPU overhead
at low levels be enough to result in a net gain when factoring in the added
transfer costs? And secondly, how should the switching point be selected?
This latter question is actually a simple optimization problem. Figure 3.11
depicts an idealized view of the situation. Obviously, optimal switching would
occur at the point where the CPU starts to outperform the GPU.

Both of these questions can be answered by benchmarks. To that end,
an experimental mixed solver was created and tested. Table 3.8 shows the
results gathered from this. The table lists the time required for one V-cycle
of a 5112 problem when switching to the CPU implementation at various
grid sizes. Figure 3.12 illustrates these results, and includes a comparison to
the GPU-only implementation.

One positive aspect of these results can be identified immediately: at
most switching points, the combined implementation is faster than the pure
GPU solver. The general shape of the curve is also following expectations. If
the CPU is used too soon at large grid levels, the performance advantage is
small or even negative, and the transfer costs are big. On the other hand, if
the switching is performed too late the full potential of the method can not
be realized.

In this particular case, the ideal switching point is 152. Using it, the com-
bined GPU/CPU implementation achieves a speedup of about 30%. While
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Figure 3.11: Selecting a good switching point for the combined implementa-
tion.

Switching point Time
2552 14188.0
1272 5125.0
632 4343.0
312 4187.0
152 3703.0
72 3937.0
32 4172.0

Table 3.8: Combined CPU/GPU solver performance (in µs per cycle) at
5112, for various switching points.
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Figure 3.12: Combined CPU/GPU solver performance compared to GPU-
only solver.

this result is not earth-shattering it is still significant enough a gain to demon-
strate that combined CPU and GPU implementations of algorithms, where
each processing unit performs the tasks most suited to it, are a useful tech-
nique. With the future adoption of APIs such as CUDA their importance
may be reduced, but there will always be parts in many algorithms that are
inherently unsuited to massively parallel processing.

3.6 Possibilities for Further Optimization

So far, a number of optimizations were performed, most of them aiming
specifically at improving performance at coarse grid levels.

• The first improvement discussed in section 2.2.2 was switching from
pBuffers to framebuffer objects. This resulted in a speedup of up up
to 55%.

• Shortly after, the switch from quad-based to triangle-based rendering
was performed, causing another 20% gain at small grid sizes.

• After still measuring bad scaling behavior for some operations in sec-
tion 3.1, many overhead-reducing changes were implemented, improv-
ing performance by around 40% on average for full V-cycles.
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• Finally, another improvement by 30% was achieved by implementing a
combined GPU/CPU solver.

While this is a sizable number of improvements, there are probably still
some significant gains to be made by further optimizations. The most im-
portant being the following:

• Switching to single-component rendertargets once OpenGL and GLSL
provide support for them. This change should be very simple, and
has to potential to improve performance by up to a factor of 4 on
modern GPUs. However, in practice, the advantage will most likely
only come close to that theoretical maximum at problem sizes of 10232

and greater. An alternative for some applications would be solving 4
similar problems at the same time using the current implementation.

• Looking back at the illustration of the GPU multigrid process in figure
2.6, there is a small inefficiency: when performing more than one step of
pre- or postsmoothing, the result has to be copied back to the original
buffer. As a configuration of two pre- and a single postsmoothing step
was used throughout this work, this was deemed not very significant.
However, if more smoothing steps are to be used it would make sense
– and be perfectly possible – to eliminate any copying by performing
a bit more housekeeping and adapting the calculation process to the
number of steps required.
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Chapter 4

Future Research

Like many GPGPU efforts, the work presented here is only a beginning.
There are two main avenues for future developments: one, making use of
the advances in GPGPU-related technologies, like new hardware features or
APIs, and two, implementing related and extended numerical algorithms.
Both of these approaches will be discussed in this chapter.

4.1 GPGPU Advances

As outlined in section 1.2, the art and science of using GPUs for non-graphics
purposes has both advanced and changed greatly over the past 5 years. These
changes are far from over, and we expect many future advances to benefit the
field of numeric processing in general, and multigrid methods in particular.
What follows is a summary of some of the relevant changes that are likely to
happen over the next few years.

• Better support for unlinked single-component floating point computa-
tion from both vendors’ hardware and in the APIs. This will enable
up to fourfold performance increases without any significant changes
to the computational process and boundary condition handling.

• Double-precision floating point arithmetic will be introduced, though
probably with a significant performance penalty. Still, this will open
up a wide field of applications that depend on higher than 32 bits of
accuracy to GPGPU solutions.

• Increased significance, usage and performance of APIs like NVIDIA
CUDA and ATI CTM will enable more flexible memory access and a
unified programming model.
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• Further improvements to branching performance will allow a wider va-
riety of algorithms to be processed on GPUs, and enable new optimiza-
tion options for existing algorithms.

• Continued increases in parallelization and performance. Due to their
massively parallel architecture, it is comparatively easier to increase
GPU performance compared to CPUs. Recently, NVIDIA announced1

that the G92 architecture (the high-end successor to the current G80)
will provide 1 Teraflop of computing power.

• Larger amounts of on-chip memory for caching or direct use by GPGPU
APIs.

Looking at this list it would be hardly surprising for a CUDA implemen-
tation of a multigrid solver running on G92 to be able to solve systems of
sizes of 20472 and above in real-time – about a year from now.

4.2 Related and Extended Algorithms

Besides perusing the advanced features and performance of future graphics
platforms, a second way to build upon the work done in this thesis would be
to implement other forms of multigrid or related PDE solvers on GPUs.

• One rather trivial to implement but potent improvement would be using
Full Multigrid instead of the simple V-cycles of the current implemen-
tation. This method computes the initial estimate for the solver by
using successive V-cycles at increasingly fine levels, and interpolating
the result. It thus – in most cases – requires fewer iterations to reach
the desired degree of accuracy. However, the actual numerical workload
is very similar, so the method was not employed for this study.

• With better branching support and new APIs, implementing smoothers
other than ω-JAC may prove advantageous. For example, GS-RB has
a significant theoretical performance advantage.

• Adding support for a wider variety of boundary conditions would com-
plicate the solver, but also make it applicable to more real-world prob-
lems.

• Solving three-dimensional systems of equations using a multigrid
method would be another interesting expansion. While the limits on

1http://www.theinquirer.net/default.aspx?article=39829
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data output in pixel shaders made working with 3D datasets cum-
bersome, CUDA partly alleviates such issues. For large datasets, the
limited amount of on-board memory may pose a problem though.

Obviously, there is a wealth of research topics still available in the field
of implementing high-performance multigrid-derived solvers on GPUs.
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